Electrical Structure of Biological Cells and Tissues: impedance spectroscopy, stereology, and singular perturbation theory

نویسنده

  • Robert Eisenberg
چکیده

Impedance Spectroscopy resolves electrical properties into uncorrelated variables, as a function of frequency, with exquisite resolution. Separation is robust and most useful when the system is linear. Impedance spectroscopy combined with appropriate structural knowledge provides insight into pathways for current flow, with more success than other methods. Biological applications of impedance spectroscopy are often not useful since so much of biology is strongly nonlinear in its essential features, and impedance spectroscopy is fundamentally a linear analysis. All cells and tissues have cell membranes and its capacitance is both linear and important to cell function. Measurements proved straightforward in skeletal muscle, cardiac muscle, and lens of the eye. In skeletal muscle, measurements provided the best estimates of the predominant (cell) membrane system that dominates electrical properties. In cardiac muscle, measurements showed definitively that classical microelectrode voltage clamp could not control the potential of the predominant membranes, that were in the tubular system separated from the extracellular space by substantial distributed resistance. In the lens of the eye, impedance spectroscopy changed the basis of all recording and interpretation of electrical measurements and laid the basis for Rae and Mathias extensive later experimental work. Many tissues are riddled with extracellular space as clefts and tubules, for example, cardiac muscle, the lens of the eye, most epithelia, and of course frog muscle. These tissues are best analyzed with a bidomain theory that arose from the work on electrical structure described here. There has been a great deal of work since then on the bi-domain and this represents the most important contribution to biology of the analysis of electrical structure in my view.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular Perturbation Theory in Output Feedback Control of Pure-Feedback Systems

This paper studies output feedback control of pure-feedback systems with immeasurable states and completely non-affine property. Since availability of all the states is usually impossible in the actual process, we assume that just the system output is measurable and the system states are not available. First, to estimate the immeasurable states a state observer is designed. Relatively fewer res...

متن کامل

Stability Analysis and Robust PID Control of Cable Driven Robots Considering Elasticity in Cables

In this paper robust PID control of fully-constrained cable driven parallel manipulators with elastic cables is studied in detail. In dynamic analysis, it is assumed that the dominant dynamics of cable can be approximated by linear axial spring. To develop the idea of control for cable robots with elastic cables, a robust PID control for cable driven robots with ideal rigid cables is firstly de...

متن کامل

Near-Optimal Controls of a Fuel Cell Coupled with Reformer using Singular Perturbation methods

A singularly perturbed model is proposed for a system comprised of a PEM Fuel Cell(PEM-FC) with Natural Gas Hydrogen Reformer (NG-HR). This eighteenth order system is decomposedinto slow and fast lower order subsystems using singular perturbation techniques that provides tools forseparation and order reduction. Then, three different types of controllers, namely an optimal full-order,a near-opti...

متن کامل

Applications of Electrical Impedance Tomography in Neurology

Introduction: Electrical impedance tomography (EIT) is a non-invasive technique utilized in various medical applications, including brain imaging and other neurological diseases. Recognizing the physiological and anatomical characteristics of organs based on their electrical properties is one of the main applications of EIT, as each variety of tissue structure has its own electrical characteris...

متن کامل

Equivalent Electrical Circuit Modeling of Ceramic-Based Microbial Fuel Cells Using the Electrochemical Impedance Spectroscopy (EIS) Analysis

The effect of the thickness of ceramic membrane on the productivity of microbial fuel cells (MFCs) was investigated with respect to the electricity generation and domestic wastewater treatment efficiencies. The thickest ceramic membrane (9 mm) gained the highest coulombic efficiency (27.58±4.2 %), voltage (681.15±33.1 mV), and current and power densities (447.11±21.37 mA/m2, 63.82±10.42 mW/m2) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015